Benign Overfitting In Linear Regression

P.L. Bartlett, P.M. Long, G. Lugosi, and A. Tsigler (2020)

Yuha Park 17, Jan, 2022

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q · 1/13

Contents

Introduction

Definitions and Notation

Main Results

Relevance to Deep Neural Networks

Conclusions

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の へ つ 2/13

Introduction

- the benign overfitting phenomenon: deep neural networks seem to predict well, even with a perfect fit to noisy training data (overfitting can perform well)
- Motivated by this phenomenon, consider when a perfect fit to training data in linear regression is compatible with accurate prediction
- the purposes of the paper are:
 1) to consider the simplest setting where we might hope to witness this phenomenon: linear regression
 2) to give a characterization of linear regression problems for which the minimum norm interpolating prediction rule has near-optimal prediction accuracy

Definition 1 (Linear Regression). A linear regression problem in a separable Hilbert space \mathbb{H} is defined by a random covariate vector $x \in \mathbb{H}$ and outcome $y \in \mathbb{R}$. We define

- 1) the covariate operator $\Sigma = \mathbb{E}[xx^{\top}]$ and
- 2) the optimal parameter vector $\theta^* \in \mathbb{H}$, satisfying

$$\mathbb{E}(y - x^{\top} \theta^*)^2 = \min_{\theta} \mathbb{E}(y - x^{\top} \theta)^2.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 4/13

Definitions and Notation

Assumption.

- 1) x and y are mean zero;
- 2) $x = V \Lambda^{1/2} z$, where $\Sigma = V \Lambda V^{\top}$ is the spectral decomposition of Σ and z has components that are independent σ_x^2 sub-Gaussian with σ_x a positive constant: that is, for all $\lambda \in \mathbb{H}$,

$$\mathbb{E}[exp(\lambda^{\top}z)] \leq \exp(\sigma_x^2 \|\lambda\|^2/2),$$

where $\|\cdot\|$ is the norm in the Hilbert space \mathbb{H} ;

3) the conditional noise variance is bounded below by some constant σ^2 ,

$$\mathbb{E}\Big[(y - x^{\top}\theta)^2 \Big| x\Big] \geq \sigma^2;$$

Assumption (Continued).

4) $y - x^{\top} \theta^*$ is σ_y^2 sub-Gaussian conditionally on x: that is, for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\Big[\exp(\lambda(y-x^{\top}\theta^*))\Big|x\Big] \leq \exp(\sigma_y^2\lambda^2/2)$$

(note that this implies $\mathbb{E}[y|x] = x^{\top}\theta^*$); and

5) almost surely, the projection of the data X on the space orthogonal to any eigenvector of Σ spans a space of dimension n, where X is the linear map from H to Rⁿ corresponding to x₁, ..., x_n ∈ H so that Xθ ∈ Rⁿ has *i*th component x_i^Tθ (a training sample (x₁, y₁), ..., (x_n, y_n): n independent pairs with the same distribution as (x, y)).

Definitions and Notation

Notation.

► the excess risk of the estimator $R(\theta) := \mathbb{E}_{x,y} \left[\left(y - x^{\top} \theta \right)^2 - \left(y - x^{\top} \theta^* \right)^2 \right]$, where $\mathbb{E}_{x,y}$ denotes the conditional expectation given all random quantities other than x, y;

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 7/13</p>

- $\mu_1(\Sigma) \ge \mu_2(\Sigma) \ge \cdots$: the eigenvalues of Σ ;
- $\|\Sigma\|$: the operator norm of Σ ;
- ► I: the identity operator on III;
- I_n : the $n \times n$ identity matrix.

Definition 2 (Minimum Norm Estimator). Given data $X \in \mathbb{H}^n$ and $\mathbf{y} \in \mathbb{R}^n$, the minimum norm estimator $\hat{\theta}$ solves the optimization problem

$$\begin{split} \min_{\theta \in \mathbb{H}} & \|\theta\|^2 \\ \text{such that} & \|X\theta - \mathbf{y}\|^2 = \min_{\beta} \|X\beta - \mathbf{y}\|^2. \end{split}$$

 \Rightarrow The minimum norm solution is given by

$$\hat{\theta} = X^{\top} (XX^{\top})^{-1} \mathbf{y}.$$

Definition 3 (Effective Ranks). For the covariance operator Σ , define $\lambda_i = \mu_i(\Sigma)$ for $i = 1, 2, \cdots$. If $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$ for $k \ge 0$, define

$$r_k(\Sigma) = rac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}, \qquad R_k(\Sigma) = rac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$$

Main Results

Theorem 1. For any σ_{\times} , there are $b, c, c_1 > 1$ for which the following holds. Consider a linear regression problem from Definition 1. Define

 $k^* = \min\{k \ge 0 : r_k(\Sigma) \ge bn\},\$

where the minimum of the empty set is defined as ∞ . Suppose that $\delta < 1$ with $\log(1/\delta) < n/c$. If $k^* \ge n/c_1$, then $\mathbb{E}R(\hat{\theta}) \ge \sigma^2/c$. Otherwise,

$$egin{aligned} &R(\hat{ heta}) \leq c \Big(\| heta^*\|^2 \|\Sigma\| \maxigg\{ \sqrt{rac{r_0(\Sigma)}{n}}, rac{r_0(\Sigma)}{n}, \sqrt{rac{\log(1/\delta)}{n}} igg\} ig) \ &+ c \log(1/\delta) \sigma_y^2 \Big(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)} \Big) \end{aligned}$$

with probability at least $1 - \delta$, and

$$\mathbb{E}R(\hat{\theta}) \geq \frac{\sigma^2}{c} \Big(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \Big).$$

Main Results

Theorem 1(Continued). Moreover, there are universal constants a_1, a_2, n_0 such that, for all $n \ge n_0$, for all Σ , and for all $t \ge 0$, there is a θ^* with $\|\theta^*\| = t$ such that, for $x \sim \mathcal{N}(0, \Sigma)$ and $y|x \sim \mathcal{N}(x^{\top}\theta^*, \|\theta^*\|^2 \|\Sigma\|)$ with probability at least 1/4,

$${\sf R}(\hat{ heta}) \geq rac{1}{a_1} \| heta^*\|^2 \|\Sigma\| \, \mathbbm{1}\Big[rac{r_0(\Sigma)}{n {
m log}(1+r_0(\Sigma))} \geq a_2\Big].$$

Definition 4. A sequence of covariance operators Σ_n with $\|\Sigma_n\| = 1$ is benign if

$$\lim_{n\to\infty}\frac{r_0(\Sigma_n)}{n}=\lim_{n\to\infty}\frac{k_n^*}{n}=\lim_{n\to\infty}\frac{n}{R_{k_n^*}(\Sigma_n)}=0.$$

Main Results

Theorem 2.

1) If $\mu_k(\Sigma) = k^{-\alpha} \ln^{-\beta}((k+1)e/2)$, then Σ is benign if and only if $\alpha = 1$ and $\beta > 1$.

2) If

$$\mu_k(\Sigma_n) = \begin{cases} \gamma_k + \epsilon_n & \text{if } k \leq p_n, \\ 0 & \text{otherwise} \end{cases}$$

and $\gamma_k = \Theta(\exp(-k/\tau))$, then \sum_n with $\|\sum_n\| = 1$ is benign if and only if $p_n = \omega(n)$ and $ne^{-o(n)} = \epsilon_n p_n = o(n)$. Furthermore, for $p_n = \Omega(n)$ and $\epsilon_n p_n = ne^{-o(n)}$,

$$R(\hat{\theta}) = O\left(\frac{\epsilon_n p_n + 1}{n} + \frac{\ln(n/(\epsilon_n p_n))}{n} + \max\left\{\frac{1}{n}, \frac{n}{p_n}\right\}\right).$$

Relevance to Deep Neural Networks

- the connection appears by considering regimes where deep neural networks are well approximated by linear functions of their parameters
- very wide neural networks can be accurately approximated by linear functions in an appropriate Hilbert space
- covariance eigenvalues that are constant or slowly decaying in a high (but finite)-dimensional space might be important in the deep network setting also

Conclusions

- 1) characterizes when the phenomenon of benign overfitting occurs in high-dimensional linear regression with Gaussian data and more generally
- gives finite sample excess risk bounds that reveal the covariance structure that ensures that the minimum norm interpolating prediction rule has near-optimal prediction accuracy
- the characterization depends on two notions of the effective rank of the data covariance operator
- overparameterization is essential for benign overfitting: the number of directions in parameter space that are unimportant for prediction must significantly exceed the sample size
- 5) data that lie in a large but finite-dimensional space exhibit the benign overfitting phenomenon with a much wider range of covariance properties than data that lie in an infinite-dimensional space