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Introduction

I the benign overfitting phenomenon: deep neural networks seem to
predict well, even with a perfect fit to noisy training data (overfitting can
perform well)

I Motivated by this phenomenon, consider when a perfect fit to training
data in linear regression is compatible with accurate prediction

I the purposes of the paper are:
1) to consider the simplest setting where we might hope to witness this
phenomenon: linear regression
2) to give a characterization of linear regression problems for which the
minimum norm interpolating prediction rule has near-optimal prediction
accuracy
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Definitions and Notation

Definition 1 (Linear Regression). A linear regression problem in a separable
Hilbert space H is defined by a random covariate vector x ∈ H and outcome
y ∈ R. We define

1) the covariate operator Σ = E[xx>] and

2) the optimal parameter vector θ∗ ∈ H, satisfying

E(y − x>θ∗)2 = minθE(y − x>θ)2.
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Definitions and Notation

Assumption.

1) x and y are mean zero;

2) x = VΛ1/2z , where Σ = VΛV> is the spectral decomposition of Σ and z
has components that are independent σ2

x sub-Gaussian with σx a positive
constant: that is, for all λ ∈ H,

E[exp(λ>z)] ≤ exp(σ2
x‖λ‖2/2),

where ‖ · ‖ is the norm in the Hilbert space H;

3) the conditional noise variance is bounded below by some constant σ2,

E
[
(y − x>θ)2

∣∣∣x] ≥ σ2;
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Definitions and Notation

Assumption (Continued).

4) y − x>θ∗ is σ2
y sub-Gaussian conditionally on x : that is, for all λ ∈ R,

E
[
exp(λ(y − x>θ∗))

∣∣∣x] ≤ exp(σ2
yλ

2/2)

(note that this implies E[y |x ] = x>θ∗); and

5) almost surely, the projection of the data X on the space orthogonal to any
eigenvector of Σ spans a space of dimension n, where X is the linear map
from H to Rn corresponding to x1, · · · , xn ∈ H so that Xθ ∈ Rn has ith
component x>i θ (a training sample (x1, y1), · · · , (xn, yn): n independent
pairs with the same distribution as (x , y)).



7/13

Definitions and Notation

Notation.

I the excess risk of the estimator

R(θ) := Ex,y

[(
y − x>θ

)2
−
(
y − x>θ∗

)2]
, where Ex,y denotes the

conditional expectation given all random quantities other than x , y ;

I µ1(Σ) ≥ µ2(Σ) ≥ · · · : the eigenvalues of Σ;

I ‖Σ‖: the operator norm of Σ;

I I : the identity operator on H;

I In: the n × n identity matrix.
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Definitions and Notation

Definition 2 (Minimum Norm Estimator). Given data X ∈ Hn and y ∈ Rn,
the minimum norm estimator θ̂ solves the optimization problem

minθ∈H ‖θ‖2

such that ‖Xθ − y‖2 = minβ‖Xβ − y‖2.

⇒ The minimum norm solution is given by

θ̂ = X>(XX>)−1y.

Definition 3 (Effective Ranks). For the covariance operator Σ, define
λi = µi (Σ) for i = 1, 2, · · · . If

∑∞
i=1 λi <∞ and λk+1 > 0 for k ≥ 0, define

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(
∑

i>k λi )
2∑

i>k λ
2
i
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Main Results

Theorem 1. For any σx , there are b, c, c1 > 1 for which the following holds.
Consider a linear regression problem from Definition 1. Define

k∗ = min{k ≥ 0 : rk(Σ) ≥ bn},

where the minimum of the empty set is defined as ∞. Suppose that δ < 1
with log(1/δ) < n/c. If k∗ ≥ n/c1, then ER(θ̂) ≥ σ2/c. Otherwise,

R(θ̂) ≤ c
(
‖θ∗‖2‖Σ‖max

{√ r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

})
+ c log(1/δ)σ2

y

(k∗
n

+
n

Rk∗(Σ)

)
with probability at least 1− δ, and

ER(θ̂) ≥ σ2

c

(k∗
n

+
n

Rk∗(Σ)

)
.
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Main Results

Theorem 1(Continued). Moreover, there are universal constants a1, a2, n0
such that, for all n ≥ n0, for all Σ, and for all t ≥ 0, there is a θ∗ with
‖θ∗‖ = t such that, for x ∼ N (0,Σ) and y |x ∼ N (x>θ∗, ‖θ∗‖2‖Σ‖) with
probability at least 1/4,

R(θ̂) ≥ 1

a1
‖θ∗‖2‖Σ‖1

[ r0(Σ)

nlog(1 + r0(Σ))
≥ a2

]
.

Definition 4. A sequence of covariance operators Σn with ‖Σn‖ = 1 is benign if

limn−→∞
r0(Σn)

n
= limn−→∞

k∗n
n

= limn−→∞
n

Rk∗n (Σn)
= 0.



11/13

Main Results

Theorem 2.

1) If µk(Σ) = k−αln−β((k + 1)e/2), then Σ is benign if and only if α = 1
and β > 1.

2) If

µk(Σn) =

{
γk + εn if k ≤ pn,
0 otherwise

and γk = Θ(exp(−k/τ)), then Σn with ‖Σn‖ = 1 is benign if and only if
pn = ω(n) and ne−o(n) = εnpn = o(n). Furthermore, for pn = Ω(n) and
εnpn = ne−o(n),

R(θ̂) = O
( εnpn + 1

n
+

ln(n/(εnpn))

n
+ max

{1

n
,
n

pn

})
.
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Relevance to Deep Neural Networks

I the connection appears by considering regimes where deep neural networks
are well approximated by linear functions of their parameters

I very wide neural networks can be accurately approximated by linear
functions in an appropriate Hilbert space

I covariance eigenvalues that are constant or slowly decaying in a high (but
finite)-dimensional space might be important in the deep network setting
also
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Conclusions

1) characterizes when the phenomenon of benign overfitting occurs in
high-dimensional linear regression with Gaussian data and more generally

2) gives finite sample excess risk bounds that reveal the covariance structure
that ensures that the minimum norm interpolating prediction rule has
near-optimal prediction accuracy

3) the characterization depends on two notions of the effective rank of the
data covariance operator

4) overparameterization is essential for benign overfitting: the number of
directions in parameter space that are unimportant for prediction must
significantly exceed the sample size

5) data that lie in a large but finite-dimensional space exhibit the benign
overfitting phenomenon with a much wider range of covariance properties
than data that lie in an infinite-dimensional space
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